

Super Ball Bushing® Bearing Products

Thomson Super Ball Bushing Bearing products offer:

- A self-aligning capability up to .5° compensating for inaccuracies in base flatness or carriage machining.
- The RoundRail Advantage combined with the selfaligning feature, eliminating the need for derating factors commonly required for linear guides.
- Travel speeds up to 10 ft./s without a reduction in load capacity.
- Lightweight, wear-resistant, engineered-polymer retainers and outer sleeves that reduce inertia and noise.
- Radially floating bearing plates. When installed in an adjustable housing, the Super Ball Bushing Bearing may be adjusted to a specific diametrical fit-up for accurate and repeatable movement.

- A constant coefficient of friction as low as .001.
- The use of smaller, less expensive drive motors, belts, linkages, gears and ball screws, when replacing high-friction plain bearings.
- A closed configuration for end-supported applications and an open configuration for continuously supported applications.
- Ready-to-install pillow blocks with double-acting seals and an access for lubrication. Installation and downtime is minimized.

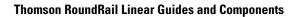
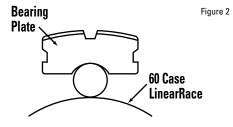
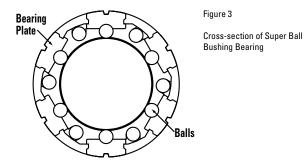
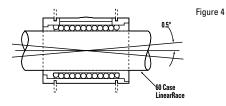





Figure 1

The Super Ball Bushing Bearing has been the industry standard for self-aligning linear bearings for more than 20 years. This bearing provides three times the load capacity or 27 times the travel life of conventional linear bearings. This dramatic improvement in bearing performance significantly reduces downtime and maintenance, while increasing machine reliability. Thomson invented the Super Ball Bushing Bearing with many unique design features. Besides the dramatic increase in load capacity, the Super Ball Bushing Bearing is self-aligning, lightweight and adjustable with a low coefficient of friction (Figure 1).

Three Times the Load Capacity

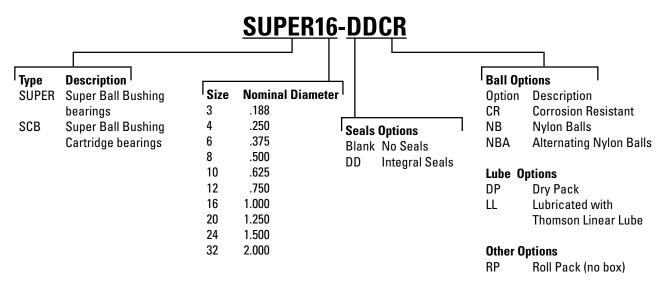
The bearing plates are hardened, bearing quality steel with ball-conforming grooves (Figure 2). The groove is slightly larger than the ball diameter, providing an optimal area for ball contact. The greater ball-to-bearing plate contact provides the increase in load capacity or travel life.

Zero Clearance Fit

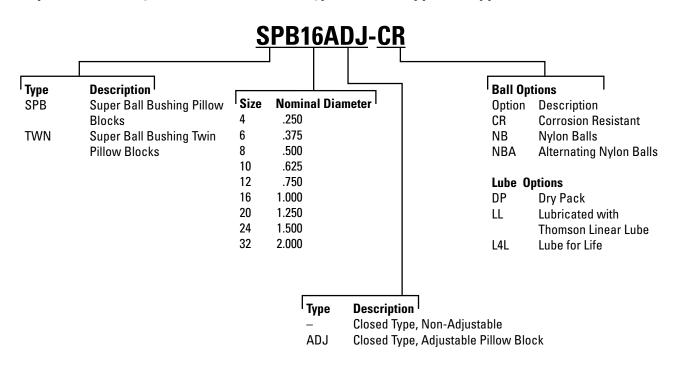
The bearing plates are also designed to float radially (Figure 3). When the bearing is mounted in an adjustable housing, selected fit-ups can be achieved on the 60 Case[®] LinearRace[®] (shaft).

Self-Aligning

The Super Ball Bushing Bearing plates pivot .5° about their centers (Figure 4) to assure smooth entry and exit of the precision bearing balls. Each plate aligns itself automatically to compensate for inaccurate housing bore alignment, base flatness or carriage machining. This provides uniform ball loading, smooth ball recirculation and a constant coefficient of friction.


Smooth, Quiet Operation

The Super Ball Bushing Bearing's outer sleeve and retainer are made of wear-resistant, low-friction engineering polymer. It reduces inertia and operating noise levels significantly.

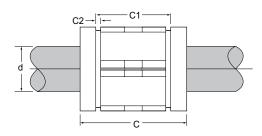

THOMSON Linear Motion. Optimized."

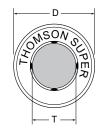
Part Number Description and Specification

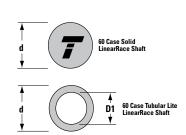
Super Ball Bushing® Bearings (Closed Type) for End-Supported Applications

Super Ball Bushing Pillow Blocks (Closed Type) for End Supported Applications

Not all options are available in all sizes.


See catalog pages or contact Thomson Customer Support for combination availability.


For additional information on bearing options, see page 264.


Thomson RoundRail Linear Guides and Components

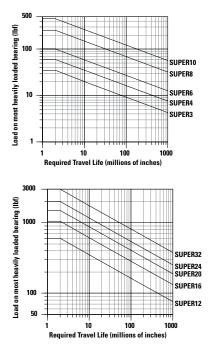
Super Ball Bushing Bearings

(Closed Type) for End-Supported Applications

Inch Ball Bushing Bearings

Super Ball Bushing Bearings (Closed Type) and 60 Case® LinearRace® (Dimensions in inches)

Part Nu	mber ⁽¹⁾			Distance			Ball	60 Case		60 Case	60 Case
Ball Bushing Bearing	60 Case Linear Race	Nominal Diameter	Length C	Between Retaining Ring Grooves C1	Retaining Ring Groove min. C2	Number of Ball Circuits	Bushing Bearing Mass Ib	LinearRace Minimum Depth of Hardness	60 Case Solid LinearRace Mass Ib/in	Tubular Lite LinearRace Mass Ib/in	Tubular Lite LinearRace ID D1
SUPER3	3/16 L	.188	.562/.547	-	-	4	.003	.027	.008	-	-
SUPER4	1/4 L	.250	.750/.735	.511/.501	.039	4	.01	.027	.01	-	-
SUPER6	3/8 L	.375	.875/.860	.699/.689	.039	4	.02	.027	.03	-	-
SUPER8	1/2 L	.500	1.250/1.230	1.032/1.012	.050	4	.04	.04	.06	-	-
SUPER10	5/8 L	.625	1.500/1.480	1.105/1.095	.056	5	.10	.04	.09	-	-
SUPER12	3/4 L	.750	1.625/1.605	1.270/1.250	.056	6	.14	.06	.13	.08	.46/.41
SUPER16	1 L	1.000	2.250/2.230	1.884/1.864	.070	6	.25	.08	.22	.16	.62/.56
SUPER20	1 1/4 L	1.250	2.625/2.600	2.004/1.984	.068	6	.45	.08	.35	-	-
SUPER24	1 1/2 L	1.500	3.000/2.970	2.410/2.390	.086	6	.85	.08	.50	.33	.93/.84
SUPER32	2 L	2.000	4.000/3.960	3.193/3.163	.105	6	1.45	.10	.89	.54	1.31/1.18


Part Number (1)		Recommended	l Housing Bore	60 Case	Ball Bushing B	earing/LinearRace Fit Up ‡	Dynamic ⁽²⁾
Ball Bushing Bearing	Working Bore Diameter T	Fixed D	Adjustable D	LinearRace Diameter d	Fixed Diameter Housing	Adjustable Diameter Housing (Before Adjustment)	Load Capacity Ib _r
SUPER3	.1875/.1870	.3755/.3750	.3760/.3750	.1870/.1865	.0015C/.0000	.002C/.0000	35
SUPER4	.2500/.2495	.5005/.5000	.5010/.5000	.2495/.2490	.0015C/.0000	.002C/.0000	60
SUPER6	.3750/.3745	.6255/.6250	.6260/.6250	.3745/.3740	.0015C/.0000	.002C/.0000	100
SUPER8	.5000/.4995	.8755/.8750	.8760/.8750	.4995/.4990	.0015C/.0000	.002C/.0000	255
SUPER10	.6250/.6245	1.1255/1.1250	1.1260/1.1250	.6245/.6240	.0015C/.0000	.002C/.0000	450
SUPER12	.7500/.7495	1.2505/1.2500	1.2510/1.2500	.7495/.7490	.0015C/.0000	.002C/.0000	600
SUPER16	1.0000/.9995	1.5630/1.5625	1.5635/1.5625	.9995/.9990	.0015C/.0000	.002C/.0000	1050
SUPER20	1.2500/1.2494	2.0008/2.0000	2.0010/2.0000	1.2495/1.2490	.0018C/.0001P	.002C/.0001P	1500
SUPER24	1.5000/1.4994	2.3760/2.3750	2.3760/2.3750	1.4994/1.4989	.0021C/.0000	.0021C/.0000	2000
SUPER32	2.0000/1.9992	3.0010/3.0000	3.0010/3.0000	1.9994/1.9987	.0023C/.0002P	.0023C/.0002P	3000

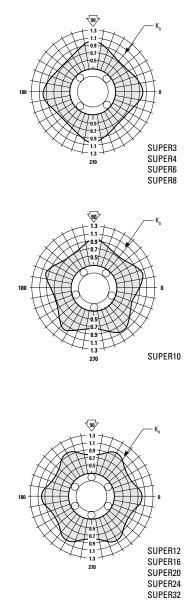
‡ P = Preload, C = Clearance

For part number description and specifications, see page 46.
 The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For Dynamic Load Correction Factors, see following polar graphs.

Load/Life Graph

(Lines indicate limiting load for given Ball Bushing® Bearing)

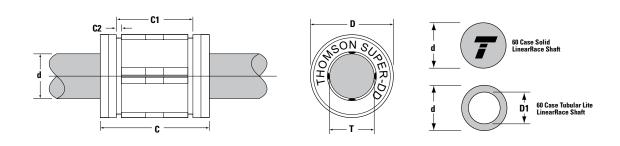
Determining Ball Bushing Bearing Size


To determine the proper Ball Bushing Bearing size, enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing Bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart, load on most heavily loaded bearing = maximum applied load/K_n. Where K_n can be determined from the Polar Graph to the right.

Polar Graphs

The actual dynamic load capacity of a Ball Bushing Bearing is determined by the orientation of the bearing or direction of the applied load. The load correction factor K_n is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual dynamic load capacity, multiply the proper correction factor by the dynamic load capacity listed in the product table on the previous page.


Servicio de Att. al Cliente

Thomson RoundRail Linear Guides and Components

Sealed Super Ball Bushing Bearings (Closed Type) for End-Supported Applications

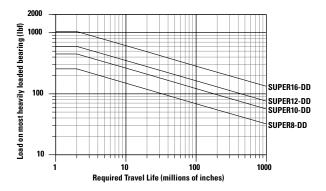
Inch Ball Bushing Bearings

Sealed Super Ball Bushing Bearings (Closed Type, seal at both ends) and 60 Case® LinearRace® (Dimensions in inches)

Part Nu	mber ⁽¹⁾			Distance	Dataining		Ball	60 Case		60 Case	60 Case
Ball Bushing Bearing	60 Case Linear Race	Nominal Diameter	Length C	Between Retaining Ring Grooves C1	Retaining Ring Groove min. C2	Number of Ball Circuits	Bushing Bearing Mass Ib	LinearRace Minimum Depth of Hardness	60 Case Solid LinearRace Mass Ib/in	Tubular Lite LinearRace Mass Ib/in	Tubular Lite LinearRace ID D1
SUPER8-DD	1/2 L	.500	1.500/1.460	1.032/1.012	.050	4	.05	.04	.06	-	-
SUPER10-DD	5/8 L	.625	1.750/1.710	1.105/1.095	.056	5	.11	.04	.09	-	-
SUPER12-DD	3/4 L	.750	1.875/1.835	1.270/1.250	.056	6	.15	.06	.13	.08	.46/.41
SUPER16-DD	1 L	1.000	2.625/2.585	1.884/1.864	.070	6	.27	.08	.22	.16	.62/.56

Part Number (1)		Recommended H	lousing Bore Dia.	60 Case	Ball Bushing B	Bearing/LinearRace Fit Up ‡	
Ball Bushing Bearing	Working Bore Diameter T	Fixed D	Adjustable D	LinearRace Diameter d	Fixed Diameter Housing	Adjustable Diameter Housing (Before Adjustment)	Dynamic ⁽²⁾ Load Capacity Ib _f
SUPER8-DD	.5000/.4995	.8750/.8755	.8750/.8760	.4995/.4990	.0015C/.0000	.002C/.0000	255
SUPER10-DD	.6250/.6245	1.1250/1.1255	1.1250/1.1260	.6245/.6240	.0015C/.0000	.002C/.0000	450
SUPER12-DD	.7500/.7495	1.2500/1.2505	1.2500/1.2510	.7495/.7490	.0015C/.0000	.002C/.0000	600
SUPER16-DD	1.0000/.9995	1.5625/1.5630	1.5625/1.5635	.9995/.9990	.0015C/.0000	.002C/.0000	1050

‡ P = Preload, C = Clearance

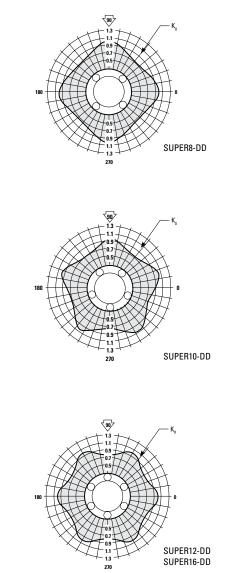

(1) For part number description and specifications, see page 46.

(2) The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For Dynamic Load Correction Factors, see following polar graphs. Note: For additional technical information, see the Engineering section beginning on page 252.

THOMSON Linear Motion. Optimized."

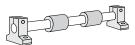
Load/Life Graph

(Lines indicate limiting load for given Ball Bushing® Bearing)

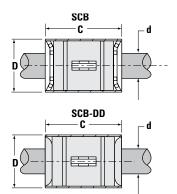

Determining Ball Bushing Bearing Size

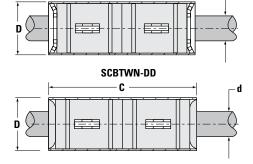
To determine the proper Ball Bushing Bearing size, enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing Bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart, load on most heavily loaded bearing = maximum applied load/K_n. Where K_n can be determined from the Polar Graph to the right.


Polar Graphs

The actual dynamic load capacity of a Ball Bushing Bearing is determined by the orientation of the bearing or direction of the applied load. The load correction factor K_n is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual dynamic load capacity, multiply the proper correction factor by the dynamic load capacity listed in the product table on the previous page.


Thomson RoundRail Linear Guides and Components


Super Ball Bushing Cartridge Bearings

Inch Ball Bushing Bearings

(Closed Type) for End-Supported Applications

SCBTWN

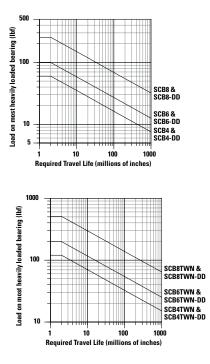
C

Super Ball Bushing Cartridge Bearings and 60 Case® LinearRace® (Dimensions in inches)

Pa	art Number	(1)				Ball Bushing	Ball Bushing	60 Case	Nominal	Rec.	60 Case	60 Case Solid	Dynamic ⁽²⁾
Without Seals	With Seals	00 0030	Nominal Diameter		Number of Ball Circuits	Mass w/out Seals lb	Mass with Seals Ib	LinearRace Diameter d	Outside Diameter D	Housing Bore Dia. Fixed	LinearRace Minimum Depth of Hardness	LinearRace Mass Ib/in	Load Capacity Ib _f
SCB4	SCB4-DD	1/4 L	.250	1.000	4	.01	.02	.2495/.2490	.531/.529	.535/.533	.027	.01	60
SCB6	SCB6-DD	3/8 L	.375	1.125	4	.02	.03	.3745/.3740	.656/.654	.660/.658	.027	.03	100
SCB8	SCB8-DD	1/2 L	.500	1.500	4	.06	.07	.4995/.4990	.906/.904	.910/.908	.04	.06	255

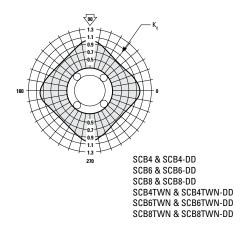
Super Ball Bushing Twin Cartridge Bearings and 60 Case LinearRace (Dimensions in inches)

F	Part Number (1)			Lenath		Ball Bushing	Ball Bushing	60 Case	Nominal	Rec.	60 Case	60 Case	Dynamic ⁽²⁾
Without Seals	With Seals	60 Case Linear Race	Nominal Diameter C ±.00	Length C ±.005	Number of Ball Circuits	Mass w/out Seals Ib	Mass with Seals Ib	LinearRace		Housing Bore Dia. Fixed		LinearRace Mass Ib/in	
SCB4TWN	SCB4TWN-DD	1/4 L	.250	1.750	4	.02	.04	.2495/.2490	.531/.529	.535/.533	.027	.01	120
SCB6TWN	SCB6TWN-DD	3/8 L	.375	2.000	4	.03	.04	.3745/.3740	.656/.654	.660/.658	.027	.03	200
SCB8TWN	SCB8TWN-DD	1/2 L	.500	2.750	4	.12	.13	.4995/.4990	.906/.904	.910/.908	.04	.06	510


(1) For part number description and specifications, see page 46.

(2) The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For Dynamic Load Correction Factors, see following polar graphs. Dynamic load capacity for Twin configuration is based on two bearings equally loaded.

TTHOMSON Linear Motion. Optimized."


Load/Life Graph

(Lines indicate limiting load for given Ball Bushing® Cartridge Bearing)

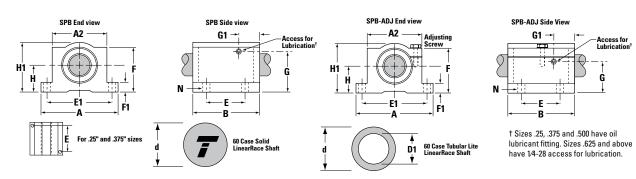
Polar Graphs

The actual dynamic load capacity of a Ball Bushing Bearing is determined by the orientation of the bearing or direction of the applied load. The load correction factor K_n is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual dynamic load capacity, multiply the proper correction factor by the dynamic load capacity listed in the product table on the previous page.

Determining Ball Bushing Bearing Size

To determine the proper Ball Bushing Bearing size enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing Bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart, load on most heavily loaded bearing = maximum applied load/ K_n . Where K, can be determined from the Polar Graph to the right.


0

Inch Ball Bushing Bearings

Thomson RoundRail Linear Guides and Components

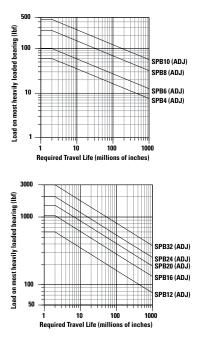
Super Ball Bushing Pillow Blocks

(Closed and Adjustable Type) for End-Supported Applications

Super Ball Bushing Pillow Blocks (Closed and Adjustable Types, seal at both ends) and 60 Case® LinearRace® (Dim. in in.)

	Part Number (1)					60 Case	60 Case	60 Case Solid	60 Case	60 Case
Super Ball Bush	ing Pillow Block	60 Case	Nominal Diameter	H ±.003	H1	LinearRace Diameter	LinearRace Minimum	LinearRace Mass	Tubular Lite LinearRace	Tubular Lite LinearRace
Fixed	Adjustable	LinearRace		1.000		d	Depth of Hardness	lb/in	Mass Ib/in	ID D1
SPB4	SPB4ADJ	1/4 L	.250	.437	.81	.2495/.2490	.027	.01	-	-
SPB6	SPB6ADJ	3/8 L	.375	.500	.94	.3745/.3740	.027	.03	-	-
SPB8	SPB8ADJ	1/2 L	.500	.687	1.25	.4995/.4990	.04	.06	-	-
SPB10	SPB10ADJ	5/8 L	.625	.875	1.63	.6245/.6240	.04	.09	-	-
SPB12	SPB12ADJ	3/4 L	.750	.937	1.75	.7495/.7490	.06	.13	.08	.46/.41
SPB16	SPB16ADJ	1 L	1.000	1.187	2.19	.9995/.9990	.08	.22	.16	.62/.56
SPB20	SPB20ADJ	1 1/4 L	1.250	1.500	2.81	1.2495/1.2490	.08	.35	-	-
SPB24	SPB24ADJ	1 1/2 L	1.500	1.750	3.25	1.4994/1.4989	.08	.50	.33	.93/.84
SPB32	SPB32ADJ	2 L	2.000	2.125	4.06	1.9994/1.9987	.10	.89	.54	1.31/1.18

Part Nu	umber (1)				_	=-					r	J	Pillow Block	Dynamic ⁽²⁾
Super Ball Bush	ing Pillow Block	Α	A2	В	E ±.010	E1 ±.010	F	F1	G	G1	ľ		Mass	Load Capacity
Fixed	Adjustable										Hole	Bolt	lb	lb _f
SPB4	SPB4ADJ	1.63	1.00	1.19	.750	1.313	.75	.19	.60	.41	.16	#6	.10	60
SPB6	SPB6ADJ	1.75	1.13	1.31	.875	1.438	.88	.19	.70	.41	.16	#6	.13	100
SPB8	SPB8ADJ	2.00	1.38	1.69	1.000	1.688	1.13	.25	.97	.44	.16	#6	.20	255
SPB10	SPB10ADJ	2.50	1.75	1.94	1.125	2.125	1.44	.28	1.20	.69	.19	#8	.50	450
SPB12	SPB12ADJ	2.75	1.88	2.06	1.250	2.375	1.56	.31	.94	.78	.19	#8	.60	600
SPB16	SPB16ADJ	3.25	2.38	2.81	1.750	2.875	1.94	.38	1.19	.91	.22	#10	1.20	1050
SPB20	SPB20ADJ	4.00	3.00	3.63	2.000	3.500	2.50	.44	1.50	1.37	.22	#10	2.50	1500
SPB24	SPB24ADJ	4.75	3.50	4.00	2.500	4.125	2.88	.50	1.75	1.13	.28	1/4	3.80	2000
SPB32	SPB32ADJ	6.00	4.50	5.00	3.250	5.250	3.63	.63	1.30	1.25	.41	3/8	7.00	3000

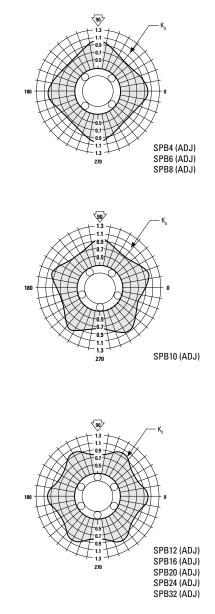

(1) For part number description and specifications, see page 46.

(2) The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For Dynamic Load Correction Factors, see following polar graphs.

THOMSON Linear Motion. Optimized."

Load/Life Graph

(Lines indicate limiting load for given Ball Bushing® Pillow Block)


Determining Ball Bushing Bearing Size

To determine the proper Ball Bushing Bearing size, enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing Bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart, load on most heavily loaded bearing = maximum applied load/K_n. Where K_n can be determined from the Polar Graph to the right.

Polar Graphs

The actual dynamic load capacity of a Ball Bushing Bearing is determined by the orientation of the bearing or direction of the applied load. The load correction factor K_n is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual dynamic load capacity, multiply the proper correction factor by the dynamic load capacity listed in the product table on the previous page.

Thomson RoundRail Linear Guides and Components

Super Ball Bushing Twin Pillow Blocks (Closed Type) for End-Supported Applications

Ġ

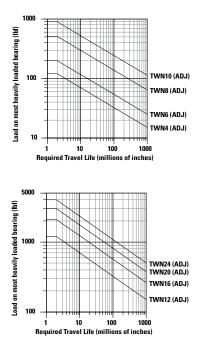
Inch Ball Bushing Bearings

TWN End view TWN Side View TWN-ADJ End view TWN-ADJ Side View -A2 G1 - G1 H A2 Access - - ------ \mathcal{C} H1 .∲-Ηİ G Ĥ N Ν † Sizes .25, .375 and .500 have oil lubricant fitting. Sizes .625 and above 4 60 Case Solid LinearRace Shaft 60 Case Tubular Lite LinearRace Shaft D1 have 1/4-28 access for lubrication.

Super Ball Bushing Twin Pillow Blocks (Closed and Adjustable Type, seal at both ends) and LinearRace® (Dim. in in.)

	Part Number (1)					60 Case	60 Case	60 Case Solid	60 Case	60 Case
Super Ball Bushing	J Twin Pillow Block	60 Case	Nominal Diameter	H ±.003	H1	LinearRace Diameter	LinearRace Minimum	LinearRace Mass	Tubular Lite LinearRace	Tubular Lite LinearRace
Fixed	Adjustable	LinearRace	Diamotor	±.005		d	Depth of Hardness	lb/in	Mass Ib/in	ID D1
TWN4	TWN4ADJ	1/4 L	.250	.437	.81	.2495/.2490	.027	.01	-	-
TWN6	TWN6ADJ	3/8 L	.375	.500	.94	.3745/.3740	.027	.03	-	-
TWN8	TWN8ADJ	1/2 L	.500	.687	1.25	.4995/.4990	.04	.06	-	-
TWN10	TWN10ADJ	5/8 L	.625	.875	1.63	.6245/.6240	.04	.09	-	-
TWN12	TWN12ADJ	3/4 L	.750	.937	1.75	.7495/.7490	.06	.13	.08	.46/.41
TWN16	TWN16ADJ	1 L	1.000	1.187	2.19	.9995/.9990	.08	.22	.16	.62/.56
TWN20	TWN20ADJ	1 1/4 L	1.250	1.500	2.81	1.2495/1.2490	.08	.35	-	-
TWN24	TWN24ADJ	1 1/2 L	1.500	1.750	3.25	1.4994/1.4989	.08	.50	.33	.93/.84

Part No	umber ⁽¹⁾												Pillow Block	Dynamic ⁽²⁾
Super Ball Bushing	g Twin Pillow Block	Α	A2	В	E ±.010	E1 ±.010	F	F1	G	G1	r	J	Mass	Load Capacity
Fixed	Adjustable										Hole	Bolt	lb	Ib,
TWN4	TWN4ADJ	1.63	1.00	2.50	2.000	1.313	.75	.19	.44	1.25	.16	#6	.19	120
TWN6	TWN6ADJ	1.75	1.13	2.75	2.250	1.438	.88	.19	.50	1.37	.16	#6	.25	200
TWN8	TWN8ADJ	2.00	1.38	3.50	2.500	1.688	1.13	.25	.59	1.75	.16	#6	.40	510
TWN10	TWN10ADJ	2.50	1.75	4.00	3.000	2.125	1.44	.28	.85	2.00	.19	#8	1.00	900
TWN12	TWN12ADJ	2.75	1.88	4.50	3.500	2.375	1.56	.31	.94	2.25	.19	#8	1.20	1200
TWN16	TWN16ADJ	3.25	2.38	6.00	4.500	2.875	1.94	.38	1.19	3.00	.22	#10	2.40	2100
TWN20	TWN20ADJ	4.00	3.00	7.50	5.500	3.500	2.50	.44	1.50	3.75	.22	#10	5.00	3000
TWN24	TWN24ADJ	4.75	3.50	9.00	6.500	4.125	2.88	.50	1.75	4.50	.28	1/4	7.80	4000

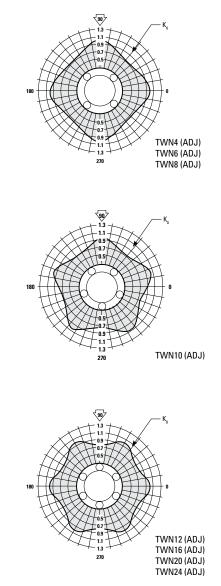

(1) For part number description and specifications, see page 46.

(2) The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For Dynamic Load Correction Factors, see following polar graphs. Dynamic load capacity is based on two bearings equally loaded. Note: For additional technical information, see the Engineering section beginning on page 252.

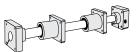
THOMSON Linear Motion. Optimized."

Load/Life Graph

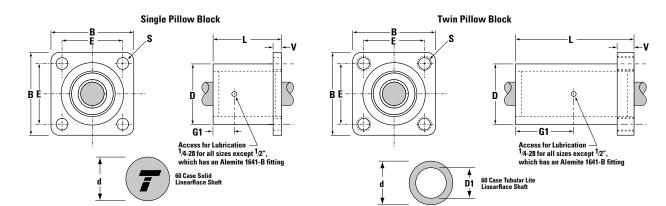
(Lines indicate limiting load for given Ball Bushing® Pillow Block)


Determining Ball Bushing Bearing Size

To determine the proper Ball Bushing Bearing size, enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing Bearing sizes that pass through or above and to the right of this point may be suitable for this application.


Note: For the purpose of using this chart, load on most heavily loaded bearing = maximum applied load/K_n. Where K_n can be determined from the Polar Graph to the right.

Polar Graphs


The actual dynamic load capacity of a Ball Bushing Bearing is determined by the orientation of the bearing or direction of the applied load. The load correction factor K_n is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual dynamic load capacity, multiply the proper correction factor by the dynamic load capacity listed in the product table on the previous page.

Super Ball Bushing[®] Flanged Single and Twin Pillow Blocks for End-Supported Applications

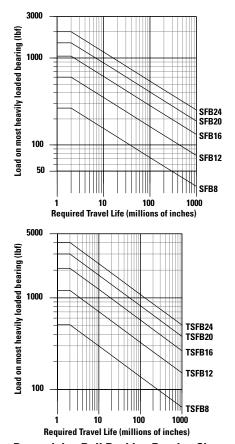
Inch Ball Bushing Bearings

Super Ball Bushing Flanged Pillow Blocks and 60 Case® LinearRace® Shaft (Dimensions in inches)

Part Num	ber ⁽¹⁾									60 Case	60 Case	60 Case	60 Case	60 Case	Pillow	
Super Smart Ball Bushing Flanged Pillow Block		Nominal Diameter	В	E ±.010	L	D	V	G1	S Hole Dia.	LinearRace Diameter d	LinearRace Minimum Depth of Hardness	Solid LinearRace Mass Ib/in	Tubular Lite LinearRace Mass Ib/in	Tubular Lite LinearRace ID D1	Block Mass Ib	Dynamic ⁽²⁾ Load Cap. Ib _f
SFB8	1/2 L	.500	1.63	1.250	1.69	1.25	.25	.72	.19	.4995/.4990	.04	.06	-	-	.23	255
SFB12	3/4 L	.750	2.38	1.750	2.06	1.75	.38	.89	.22	.7495/.7490	.06	.13	.08	.460/.416	.52	600
SFB16	1 L	1.000	2.75	2.125	2.81	2.25	.50	1.27	.28	.9995/.9990	.08	.22	.16	.629/.569	1.04	1050
SFB20	1 1/4 L	1.250	3.50	2.750	3.63	3.00	.63	1.67	.35	1.2495/1.2490	.08	.35	-	-	2.21	1500
SFB24	1 1/2 L	1.500	4.00	3.125	4.00	3.62	.75	1.86	.41	1.4994/1.4989	.08	.50	.33	.93/.84	3.68	2000

Super Ball Bushing Flanged Twin Pillow Blocks and 60 Case LinearRace Shaft (Dimensions in inches)

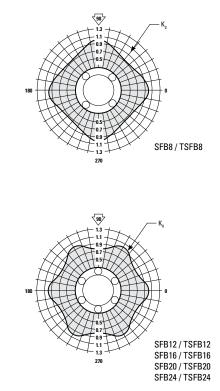
Part Num	ber ⁽¹⁾									60 Case	60 Case	60 Case	60 Case	60 Case	Dillow	
Super Smart Ball Bushing Flanged Twin Pillow Block		Nominal Diameter	В	E ±.010	L	D	V	G1	S Thread	LinearRace Diameter d	LinearRace Minimum Depth of Hardness	Solid LinearRace Mass Ib/in	Tubular Lite LinearRace Mass Ib/in	Tubular Lite LinearRace ID D1	Pillow Block Mass Ib	Dynamic ⁽²⁾ Load Cap. Ib _f
TSFB8	1/2 L	.500	1.63	1.250	3.20	1.25	.90	1.48	1/4-20	.4995/.4990	.04	.06	-	-	.45	510
TSFB12	3/4 L	.750	2.38	1.750	3.95	1.75	.90	1.98	1/4-20	.7495/.7490	.06	.13	.08	.460/.416	1.05	1200
TSFB16	1 L	1.000	2.75	2.125	5.33	2.25	.90	2.67	5/16-18	.9995/.9990	.08	.22	.16	.629/.569	1.95	2100
TSFB20	1 1/4 L	1.250	3.50	2.750	6.70	3.00	.90	3.35	5/16-18	1.2495/1.2490	.08	.35	-	-	4.06	3000
TSFB24	1 1/2 L	1.500	4.00	3.125	7.50	3.62	1.00	3.75	3/8-16	1.4994/1.4989	.08	.50	.33	.93/.84	6.84	4000


(1) For part number description and specifications, see page 25.

(2) The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For Dynamic Load Correction Factors, see following polar graphs. Dynamic load capacity for Twin configuration is based on two bearings equally loaded.

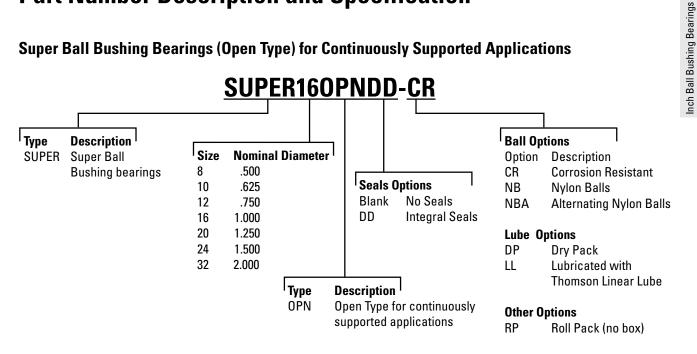
Load/Life Graph

(Lines indicate limiting load for given Ball Bushing Pillow Block)

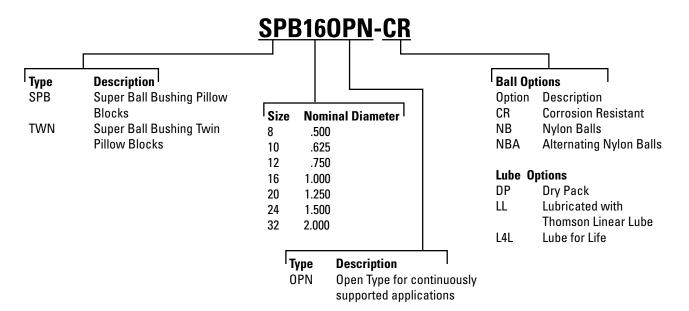


Determining Ball Bushing Bearing Size To determine the proper Ball Bushing Bearing size, enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing Bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart, load on most heavily loaded bearing = maximum applied load/K_n. Where K_n can be determined from the Polar Graph to the right.


Polar Graphs

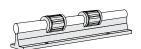
The actual dynamic load capacity of a Ball Bushing Bearing is determined by the orientation of the bearing or direction of the applied load. The load correction factor K_{n} is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual dynamic load capacity, multiply the proper correction factor by the dynamic load capacity listed in the product table on the previous page.

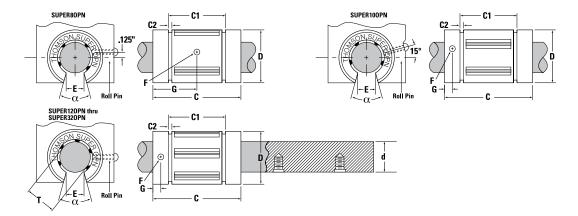


Part Number Description and Specification

Super Ball Bushing Bearings (Open Type) for Continuously Supported Applications

Super Ball Bushing Pillow Blocks (Open Type) for Continuously Supported Applications




Not all options are available in all sizes.

See catalog pages or contact Thomson Customer Support for combination availability. For additional information on bearing options, see page 264.

THOMSON Linear Motion. Optimized."

Super Ball Bushing® Bearings (Open Type) for Continuously Supported Applications

Super Ball Bushing Bearings (Open Type) and 60 Case® LinearRace® (Dimensions in inches)

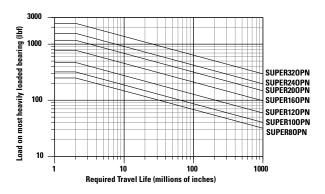
Part Numl	ber ⁽¹⁾			Distance Between	Ret. Rina	Min. Slot	Retention Hole				Ball
Ball Bushing Bearing	60 Case Linear Race*	Nominal Diameter	Length C	Retaining Rings C1	Groove min.	Width E	Dia. F	Loc. G	Angle deg α		Bushing Bearing Mass Ib
SUPER80PN	1/2 L PD	.500	1.250/1.230	1.032/1.012	.050	.31	.14	.63	30	4	.04
SUPER100PN	5/8 L PD	.625	1.500/1.480	1.105/1.095	.056	.37	.11	.13	30	4	.08
SUPER120PN	3/4 L PD	.750	1.625/1.605	1.270/1.250	.056	.43	.14	.13	30	5	.12
SUPER160PN	1 L PD	1.000	2.250/2.230	1.884/1.864	.070	.56	.14	.13	30	5	.21
SUPER200PN	1 1/4 L PD	1.250	2.625/2.600	2.004/1.984	.068	.62	.20	.19	30	5	.38
SUPER240PN	1 1/2 L PD	1.500	3.000/2.970	2.410/2.390	.086	.75	.20	.19	30	5	.71
SUPER320PN	2 L PD	2.000	4.000/3.960	3.193/3.163	.105	1.00	.27	.31	30	5	1.20

* 60 Case begins on page 170.

Part Number (1)		Recommended H	lousing Bore Dia.	60 Case	Ball Bushing Beari	Dynamic ⁽²⁾	
Ball Bushing Bearing	Working Bore Diameter T	Fixed D	Adjustable D	LinearRace Diameter d	Fixed Diameter Housing	Adjustable Diameter Housing (Before Adjustment)	Load Capacity Ib _r
SUPER80PN	.5000/.4995	.8755/.8750	.8760/.8750	.4995/.4990	.0015C/.0000	.002C/.0000	230
SUPER100PN	.6250/.6245	1.1255/1.1250	1.1260/1.1250	.6245/.6240	.0015C/.0000	.002C/.0000	320
SUPER120PN	.7500/.7495	1.2505/1.2500	1.2510/1.2500	.7495/.7490	.0015C/.0000	.002C/.0000	470
SUPER160PN	1.0000/.9995	1.5630/1.5625	1.5635/1.5625	.9995/.9990	.0015C/.0000	.002C/.0000	780
SUPER200PN	1.2500/1.2494	2.0008/2.0000	2.0010/2.0000	1.2495/1.2490	.0018C/.0001P	.002C/.0001P	1170
SUPER240PN	1.5000/1.4994	2.3760/2.3750	2.3760/2.3750	1.4994/1.4989	.0021C/.0000	.0021C/.0000	1560
SUPER320PN	2.000/1.9992	3.0010/3.0000	3.0010/3.0000	1.9994/1.9987	.0023C/.0002P	.0023C/.0002P	2350

‡ P = Preload, C = Clearance

(1) For part number description and specifications, see page 59.

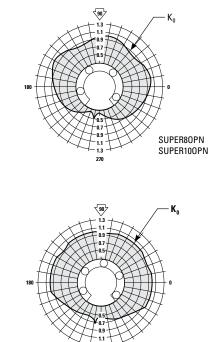

(2) The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For Dynamic Load Correction Factors, see following polar graphs.

Inch Ball Bushing Bearings

Thomson RoundRail Linear Guides and Components

Load/Life Graph

(Lines indicate limiting load for given Ball Bushing Pillow Block)

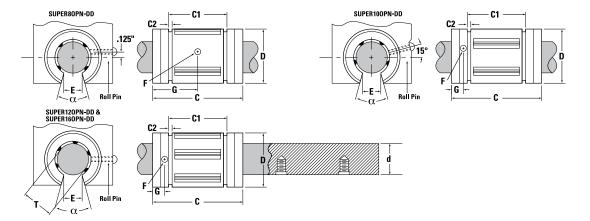

Determining Ball Bushing Bearing Size

To determine the proper Ball Bushing Bearing size, enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing Bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart, load on most heavily loaded bearing = maximum applied load/K_n. Where K_n can be determined from the Polar Graph to the right.

Polar Graphs

The actual dynamic load capacity of a Ball Bushing Bearing is determined by the orientation of the bearing or direction of the applied load. The load correction factor K_n is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual dynamic load capacity, multiply the proper correction factor by the dynamic load capacity listed in the product table on the previous page.


SUPER120PN SUPER160PN SUPER200PN SUPER240PN SUPER320PN

www.rodavigo.net +34 986 288118 Servicio de Att. al Cliente

THOMSON Linear Motion. Optimized."

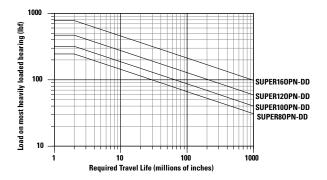
Sealed Super Ball Bushing® Bearings (Open Type) for Continuously Supported Applications

Sealed Super Ball Bushing Bearings (Open Type, seal at both ends) and 60 Case® LinearRace® (Dimensions in inches)

Part Number (1)				Distance Between	Ret. Ring	Min. Slot	Retention Hole			Number of Ball Circuits	Ball
Ball Bushing Bearing	60 Case Linear Race*	Nom. Dia.	Length		Groove min.	Groove min. Width		Loc. G	Angle deg α		Bushing Bearing Mass Ib
SUPER80PN-DD	1/2 L PD	.500	1.500/1.460	1.032/1.012	.050	.31	.14	.750	30	4	.03
SUPER100PN-DD	5/8 L PD	.625	1.750/1.710	1.105/1.095	.056	.37	.11	.250	30	4	.08
SUPER120PN-DD	3/4 L PD	.750	1.875/1.835	1.270/1.250	.056	.43	.14	.250	30	5	.12
SUPER160PN-DD	1 L PD	1.000	2.625/2.585	1.884/1.864	.070	.56	.14	.313	30	5	.21

* 60 Case begins on page 170.

Part Number (1)		Recommended H	lousing Bore Dia.	60 Case	Ball Bushing Beari	Dynamic ⁽²⁾	
Ball Bushing Bearing	Working Bore Diameter T	Fixed D	Adjustable D	LinearRace Diameter d	Fixed Diameter Housing	Adjustable Diameter Housing (Before Adjustment)	Load Capacity Ib _f
SUPER80PN-DD	.5000/.4995	.8755/.8750	.8760/.8750	.4995/.4990	.0015C/.0000	.002C/.0000	230
SUPER100PN-DD	.6250/.6245	1.1255/1.1250	1.1260/1.1250	.6245/.6240	.0015C/.0000	.002C/.0000	320
SUPER120PN-DD	.7500/.7495	1.2505/1.2500	1.2510/1.2500	.7495/.7490	.0015C/.0000	.002C/.0000	470
SUPER160PN-DD	1.0000/.9995	1.5630/1.5625	1.5635/1.5625	.9995/.9990	.0015C/.0000	.002C/.0000	780

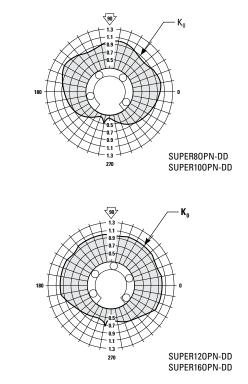

‡ P = Preload, C = Clearance

(1) For part number description and specifications, see page 59.

(2) The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For Dynamic Load Correction Factors, see following polar graphs.

Load/Life Graph

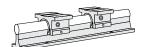
(Lines indicate limiting load for given Ball Bushing Pillow Block)

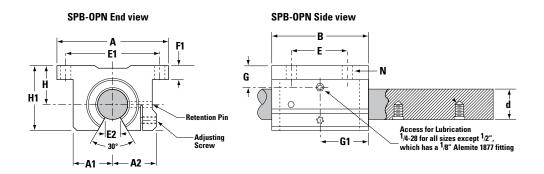

Determining Ball Bushing Bearing Size

To determine the proper Ball Bushing Bearing size, enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing Bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart, load on most heavily loaded bearing = maximum applied load/K_n. Where K_n can be determined from the Polar Graph to the right.

Polar Graphs


The actual dynamic load capacity of a Ball Bushing Bearing is determined by the orientation of the bearing or direction of the applied load. The load correction factor K_n is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual dynamic load capacity, multiply the proper correction factor by the dynamic load capacity listed in the product table on the previous page.



www.rodavigo.net +34 986 288118 Servicio de Att. al Cliente

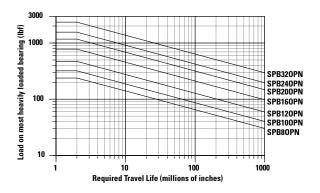
THOMSON Linear Motion. Optimized."

Super Ball Bushing® Pillow Blocks (Open Type) for Continuously Supported Applications

Super Ball Bushing Pillow Blocks (Open Type, seal at both ends) and 60 Case® LinearRace® (Dimensions in inches)

Part Number (1)		Nominal	н					
Super Ball Bushing Pillow Block	60 Case LinearRace*	Diameter	н ±.003	·· H1		A1	A2	В
SPB80PN	1/2 L PD	.500	.687	1.13	2.00	.69	.75	1.50
SPB100PN	5/8 L PD	.625	.875	1.44	2.50	.88	.94	1.75
SPB120PN	3/4 L PD	.750	.937	1.56	2.75	.94	1.00	1.88
SPB160PN	1 L PD	1.000	1.187	2.00	3.25	1.19	1.25	2.63
SPB200PN	1 1/4 L PD	1.250	1.500	2.50	4.00	1.50	1.63	3.38
SPB240PN	1 1/2 L PD	1.500	1.750	2.94	4.75	1.75	1.88	3.75
SPB320PN	2 L PD	2.000	2.125	3.63	6.00	2.25	2.44	4.75

* 60 Case begins on page 170.

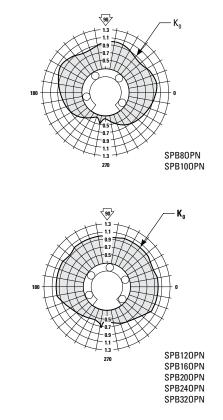

Part Number (1) Super Ball Bushing	60 Case LinearRace Diameter	E ±.010	E1	E2	F1	G	G1	N		Pillow Block Mass	Dynamic ⁽²⁾ Load Capacity
Pillow Block	d	±.010	±.010	Min.				Hole	Bolt	lb	lb _f
SPB80PN	.4995/.4990	1.000	1.688	.31	.25	.50	.89	.16	#6	.2	230
SPB100PN	.6245/.6240	1.125	2.125	.37	.28	.55	.95	.19	#8	.4	320
SPB120PN	.7495/.7490	1.250	2.375	.43	.31	.67	1.08	.19	#8	.5	470
SPB160PN	.9995/.9990	1.750	2.875	.56	.38	.87	1.45	.22	#10	1.0	780
SPB200PN	1.2495/1.2490	2.000	3.500	.62	.44	1.15	1.83	.22	#10	2.1	1170
SPB240PN	1.4994/1.4989	2.500	4.125	.75	.50	1.28	2.02	.28	.25	3.2	1560
SPB320PN	1.9994/1.9987	3.250	5.250	1.00	.63	1.55	3.19	.41	.38	6.0	2350

(1) For part number description and specifications, see page 59.

(2) The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. For Dynamic Load Correction Factors, see following polar graphs.

Load/Life Graph

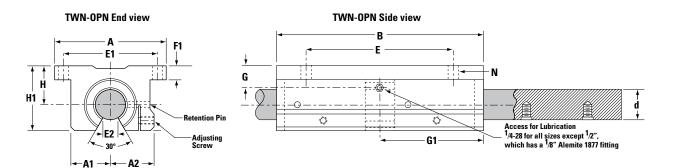
(Lines indicate limiting load for given Ball Bushing Pillow Block)


Determining Ball Bushing Bearing Size

To determine the proper Ball Bushing Bearing size, enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing Bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart, load on most heavily loaded bearing = maximum applied load/K_n. Where K_n can be determined from the Polar Graph to the right.

Polar Graphs

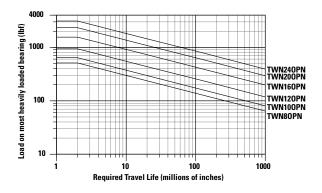

The actual dynamic load capacity of a Ball Bushing Bearing is determined by the orientation of the bearing or direction of the applied load. The load correction factor K_n is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual dynamic load capacity, multiply the proper correction factor by the dynamic load capacity listed in the product table on the previous page.

THOMSON Linear Motion. Optimized."

Super Ball Bushing[®] Twin Pillow Blocks (Open Type) for Continuously Supported Applications

Super Ball Bushing Twin Pillow Blocks (Open Type, seal at both ends) and 60 Case® LinearRace® (Dimensions in inches)

Part Number	Part Number (1)		Н					
Super Ball Bushing Twin Pillow Block	60 Case LinearRace*	Nominal Diameter	н H1 ±.003		A	A1	A2	В
TWN80PN	1/2 L PD	.500	.687	1.13	2.00	.69	.75	3.50
TWN100PN	5/8 L PD	.625	.875	1.44	2.50	.88	.94	4.00
TWN120PN	3/4 L PD	.750	.937	1.56	2.75	.94	1.00	4.50
TWN160PN	1 L PD	1.000	1.187	2.00	3.25	1.19	1.25	6.00
TWN200PN	1 1/4 L PD	1.250	1.500	2.50	4.00	1.50	1.63	7.50
TWN240PN	1 1/2 L PD	1.500	1.750	2.94	4.75	1.75	1.88	9.00
* 00 0								

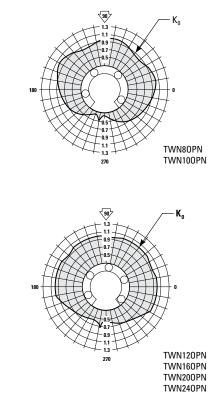

* 60 Case begins on page 170.

Part Number (1) Super Ball Bushing	60 Case LinearRace Diameter	E ±.010	E1 ±.010	E2 Min.	F1	G	G1	N		Pillow Block Mass	Dynamic ⁽²⁾ Load Capacity
Twin Pillow Block	d	±.010	±.010			Hole	Bolt	lb	lb _f		
TWN80PN	.4995/.4990	2.500	1.688	.31	.25	.56	1.75	.16	#6	.4	460
TWN100PN	.6245/.6240	3.000	2.125	.37	.28	.67	2.00	.19	#8	.8	640
TWN120PN	.7495/.7490	3.500	2.375	.43	.31	.94	2.25	.19	#8	1.0	940
TWN160PN	.9995/.9990	4.500	2.875	.56	.38	1.20	3.00	.22	#10	2.0	1560
TWN200PN	1.2495/1.2490	5.500	3.500	.62	.44	1.50	3.75	.22	#10	4.2	2340
TWN240PN	1.4994/1.4989	6.500	4.125	.75	.50	1.75	4.50	.28	.25	6.7	3120

 For part number description and specifications, see page 59.
 The Dynamic Load Capacity is based on a rated travel life of 2 million inches. The actual Dynamic Load Capacity can be affected by the orientation of the bearing or the direction of the applied load. or Dynamic Load Correction Factors, see following polar graphs. Dynamic load capacity is based on two bearings equally loaded. Note: For additional technical information, see the Engineering section beginning on page 252.

Load/Life Graph

(Lines indicate limiting load for given Ball Bushing Pillow Block)


Determining Ball Bushing Bearing Size

To determine the proper Ball Bushing Bearing size, enter the chart with the maximum load of the most heavily loaded bearing and the required travel life. Mark where the two lines intersect. All Ball Bushing Bearing sizes that pass through or above and to the right of this point may be suitable for this application.

Note: For the purpose of using this chart, load on most heavily loaded bearing = maximum applied load/K_n. Where K_n can be determined from the Polar Graph to the right.

Polar Graphs

The actual dynamic load capacity of a Ball Bushing Bearing is determined by the orientation of the bearing or direction of the applied load. The load correction factor K_n is found by knowing the direction of the applied load relative to the orientation of the bearings ball tracks and referring to the polar graph. To determine the actual dynamic load capacity, multiply the proper correction factor by the dynamic load capacity listed in the product table on the previous page.

www.rodavigo.net +34 986 288118 Servicio de Att. al Cliente

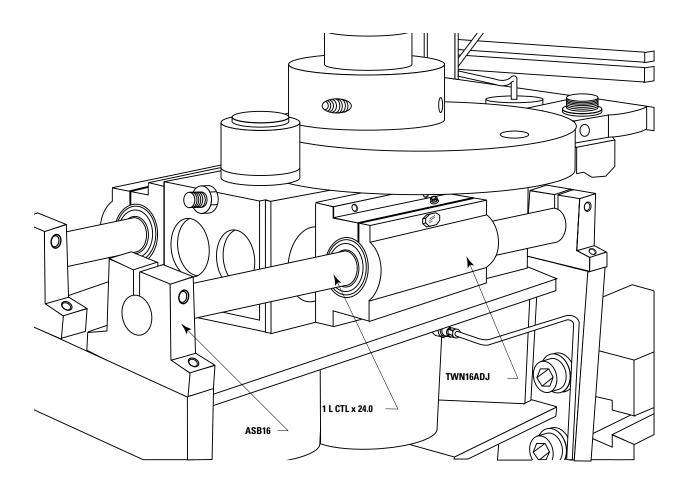
THOMSON Linear Motion. Optimized."

Cam-Actuated Part Transfer Mechanism for Multiple-Transfer Press

Objective

Improve production rate and increase the service life of a transfer table mechanism.

Solution


Replace the conventional linear bearings with Adjustable Super Ball Bushing® Twin Pillow Blocks. Bearing service life increased to five years.

Products Specified

2 - TWN16ADJ (Super Ball Bushing Twin Pillow Blocks) 4 - ASB16 (60 Case® LinearRace® End Support Blocks) 2 - 1 L CTL x 24.00 in (60 Case LinearRace)

Benefits

The table achieved maximum cycle efficiency by reducing costly downtime and improving service life.

www.thomsonlinear.com

68